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Introduction

Oncogene-addicted non-small cell lung cancer (NSCLC) 
patients frequently develop central nervous system (CNS) 
metastases, with percentages reaching up to 50% for brain 
and 10% for leptomeningeal metastases (1-3). ALK- and 

ROS1-positive tumors have a high CNS tropism, with an 
incidence of CNS metastases at baseline of 36% and 34%, 
respectively (4), a risk of CNS progression of 58% at 3 
years (5) and up to 70% at progression during crizotinib 
treatment (1,6,7). Also, in a significant proportion of cases, 
patients develop isolated CNS metastases, especially when 
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treated with first-generation tyrosine kinase inhibitors 
(TKIs), due to an insufficient drug penetration of the blood-
brain barrier (4,8,9).

CNS metastases are associated with a dismal prognosis 
and impact the quality of life of cancer patients, which 
highlights the importance of administering an effective 
treatment for CNS disease. Novel generation TKIs, 
including second (alectinib, ceritinib, brigatinib) and third 
generation (lorlatinib) ALK and ROS1 inhibitors proved 
an increased intracranial activity with long duration of 
responses (10). 

The use of TKIs frequently result in the development 
of on-target or by-pass resistance alterations. In ALK-
rearranged NSCLC, ALK mutations occur in 30% of 
patients under crizotinib, in up to 54–70% after second 
generation ALK inhibitors and may accumulate with the 
sequential use of TKIs (11,12). There is a wide spectrum 
of resistance alterations that have their own sensitivity and 
need drugs with different structures, that do not have the 
same resistance profile (13). Similarly, ROS1-rearranged 
NSCLC may develop various resistance mutations under 
crizotinib, which may have different sensitivity profiles for 
newer generation inhibitors (14). Thus, the identification 
of resistance alterations might better guide treatment 
choice and tailor treatment according to the “sensitivity 
profile” of each alteration. This might increase chances of 
using the most adequate treatment, which is essential for 
patients with CNS progression, at risk of rapid neurological 
deterioration. 

However, obtaining a molecular profile of the CNS 
progression is challenged by the invasive nature of tissue 
biopsies, which are not feasible in the majority of cases. An 
alternative technique is the analysis of circulating tumor 
DNA (ctDNA), which is shed by tumors in the blood or 
other liquids, such as the cerebro-spinal fluid (CSF), pleural 
or peritoneal collections. ctDNA analysis, named “liquid 
biopsy” is a minimally invasive technique, that may detect 
genomic alterations and resistance mutations with high 
sensitivity and specificity (15,16). 

Here, we discuss the interest and feasibility of liquid 
biopsy in patients with ALK- or ROS1-rearranged tumors 
with CNS metastases. 

TKIs and CNS metastases 

In ALK-rearranged NSCLC, crizotinib, the first approved 
ALK inhibitor, has superior intracranial disease control rates 
compared to standard chemotherapy, but the insufficient 

CNS penetration of crizotinib leads to that CNS is the 
main site of disease progression (7,17). Next-generation 
ALK inhibitors have superior intracranial activity compared 
to crizotinib and/or chemotherapy, with early and durable 
CNS responses (18-26). Importantly, second generation 
ALK inhibitors have also an intra-cranial activity after 
crizotinib failure, while lorlatinib, a third generation TKI 
inhibitor, is active also in heavily pre-treated patients who 
fail at least two lines of therapy (27). Lorlatinib is very 
active in patients with CNS disease because of its high CNS 
penetration that reach 75% of plasma levels in the CSF, and 
because it is able to treat the majority of ALK resistance 
mutations (27,28). 

In ROS1-rearranged NSCLC, ROS1/ALK inhibitors are 
highly active, including in patients with brain metastases. 
Crizotinib, the first approved ROS1 inhibitor, showed 
an objective response rate of 71.7%, regardless of the 
presence of brain metastases at baseline. In 23 patients 
with measurable brain metastases at baseline, the median 
progression-free survival (PFS) was 10.2 months (29). In 
crizotinib-naïve patients with baseline brain metastases, 
next generation ROS1 inhibitors have increased intracranial 
activity, as reported with ceritinib in 5 out of 8 patients in a 
phase II study (30) and entrectinib, an ALK/ROS1/pan-TRK 
inhibitor, in 55% of patients in a pooled analysis of phase I 
and II studies (31). Repotrectinib, another next generation 
ROS1/TRK/ALK inhibitor, was shown to have intracranial 
activity in in vivo and clinical studies (32,33). In crizotinib-
pretreated NSCLC patients with baseline CNS metastases 
included in the IFCT-1803 LORLATU expanded access 
program cohort, lorlatinib showed intracranial ORR of 
37.7%, similar to ALK-positive patients (34). 

Tailoring treatment based on the molecular 
profile might improve patients’ outcomes

As next generation ALK and ROS1 inhibitors have different 
“sensitivity” profiles (10,14,32,35,36) (Figure 1), a tailored 
treatment based on the identified resistance mutations 
might gain additional lines of therapy, while also increasing 
the chance of obtaining a CNS response. In case of ALK-
positive tumors, lorlatinib may be effective in the majority 
of cases, especially when the ALK G1202 mutation is found, 
which is resistant to all other ALK inhibitors and it is the 
main resistance mutation after the current standard of care, 
second generation TKI (13). Promising preclinical data 
presented at AACR 2020 point out towards TPX-031, a 
novel ALK inhibitor, with high potency against the wild-
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type ALK and hard to treat mutations, such as the solvent 
front mutation G1202R and the compound mutation 
G1202R/L1196M. In case of ROS1 positive tumors, the 
identification of ROS1 G2032R could directly tailor patients 
for the use of repotrectinib and not lorlatinib, which will 
not be active in this situation (32). The identification 
of compound mutations that drive resistance to third 
generation inhibitors, might be overcome in selected cases 
by first or second-generation inhibitors with different 
molecular structures or they might even resensitize tumors 
to first generation inhibitors (37,38). Also, emergent by-
pass alterations might benefit from personalized drug 
combinations, such as dual ALK/MET blockade in tumors 
acquiring MET alterations (39). 

Clinical trials evaluating drugs matched to the identified 
resistance alterations will help clarify the clinical utility 
of a personalized approach. For instance, the ongoing 
National Cancer Institute (NCI)-NRG ALK Protocol 
phase II randomized trial (NCT03737994) investigates 
the use of tumor and liquid biopsies in 660 ALK-positive 

NSCLC patients failing a next-generation inhibitor, who 
receive a matched treatment according to the identified 
resistance mutation. The ALKALINE (NCT04127110) 
and the ORAKLE (NCT04111705) phase II studies aim to 
assess the clinical activity of lorlatinib in NSCLC patients 
failing second generation inhibitors, based on the molecular 
pattern of resistance to prior ALK inhibitors, assessed by 
liquid biopsy and tissue or liquid biopsy, respectively. 

Clinical relevance of liquid biopsy in the 
characterization of CNS lesions 

As performing CNS tissue biopsies is highly invasive for 
the patient, liquid biopsy by ctDNA appears as an easy, 
minimally invasive technique, able to rapidly provide a 
tumor molecular profiling (15). 

In ALK-positive NSCLC, plasma liquid biopsy has 
been proven to be clinically relevant at detecting the 
fusion and resistance mutations after failing TKIs. In 101 
NSCLC patients positive for the ALK fusion, targeted 

Figure 1 Examples of treatment tailoring based on the identification of resistance mutations. NSCLC, non-small cell lung cancer.
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next-generation, amplicon-based sequencing has shown 
a sensitivity of 67% for the fusion detection at baseline 
and 46% at TKI failure. Resistance mutations following 
TKIs were detected in 22% of ALK-positive cases at 
progression to first and next generation ALK TKIs (29% 
after second generation ALK TKI), with ALK G1202R the 
most frequently detected. Interestingly, the authors studied 
the efficacy of the next therapy based on the presence of 
molecular alterations in blood. The presence of resistance 
alterations was associated with an overall survival of  
58.5 months in case of ALK mutations and 44.1 months 
in case of other alterations. A negative liquid biopsy (no 
alteration detected) at TKI failure was associated with 
improved outcomes (105 months), that may be related to 
the low tumor burden of these patients. Among patients 
with ALK mutations, patients harboring complex ALK-
resistance mutations had the poorest outcomes to next 
therapy (40). In another study on 76 ALK-positive NSCLC, 
a high concordance of the ALK fusion was obtained between 
plasma and tissue in 91% of cases (20/22 blood/tissue 
samples). In 15 patients failing a TKI, 24 ALK resistance 
mutations were detected, the most commonly observed 
being ALK G1269A (4/24 alterations) (41). 

In 27 ROS1-positive NSCLC, plasma liquid biopsy by 
amplicon-based sequencing identified resistance mutations 
following TKIs in 30% of ROS1-positive cases, with ROS1 
G2032R being the most frequently detected. Similar to 
ALK, a negative liquid biopsy at TKI failure was associated 
with improved outcomes, and the presence of G2032R 
at progression to crizotinib was associated with rapid 
progression to subsequent therapy, including lorlatinib (40). 
Similar results were obtained in 56 ROS1-positive NSCLC, 
where the detection of the ROS1 fusion at relapse following 
ROS1 inhibitors was 50% by plasma liquid biopsy. Six out 
of 18 patients failing crizotinib (33%) had ROS1 resistance 
mutations, the most frequently detected being the ROS1 
G2032R mutation, in 5 out of 6 cases (42).

However, plasma liquid biopsy is unlikely to adequately 
characterize the molecular landscape of CNS metastases, as 
the blood-brain barrier could reduce the presence of ctDNA 
in the bloodstream. Our group has evaluated the clinical 
relevance of plasma liquid biopsy in oncogene-addicted 
NSCLC with isolated CNS progression, in comparison 
with patients with systemic progression. Although we used a 
highly sensitive next-generation sequencing assay, there was 
a high percentage of negative liquid biopsies in patients with 
isolated CNS progression (48%), as opposed to patients 

with systemic progression (8–16%). In several patients 
with longitudinal biopsies, a negative liquid biopsy at the 
moment of isolated CNS progression shifted to positive 
when there was a systemic progression. Moreover, patients 
with isolated CNS progression and positive liquid biopsies 
had a higher chance of developing earlier a subsequent 
extra-CNS progression, suggesting that plasma ctDNA was 
more likely to be shed by infra-radiologic, active extra-CNS 
lesions (9). 

A more suitable way for characterizing the mutational 
landscape of CNS lesions is the CSF (43). As compared 
to plasma ctDNA, several studies have shown that CSF 
ctDNA had a higher mutation detection rates and higher 
allele frequencies of identified genomic alterations in a 
cohort of 72 NSCLC patients (44), in 26 EGFR driven-
NSCLC (45) and 11 ALK rearranged NSCLC patients with 
leptomeningeal metastases (3). In the 11 paired plasma-
CSF samples from ALK rearranged NSCLC patients, the 
driver alterations were detected in 9 out of 11 CSF samples 
(81.8%) and in 5 out of 11 plasma samples (45.5%). In one 
patient, two ALK resistance mutations were detected in 
CSF and not in plasma (3). Moreover, a significant number 
of unique mutations was found in CSF, such as copy 
number variants of EGFR, CCND1, FGF3 and FGF4 (3).  
Similarly, in a cohort of EGFR-driven NSCLC with 
leptomeningeal disease, acquired resistance alterations, such 
as EGFR T790M, copy-number variants of MET, ERBB2, 
and KRAS, and TP53 loss of heterozygosity, were detected 
in CSF ctDNA compared to plasma ctDNA, which mainly 
detected the initial EGFR-activating mutations (45). This 
could be explained by the fact that alterations with low 
allele frequencies might be easier detected in CSF where 
the low levels of non-tumor derived DNA lead to a high 
ctDNA/circulating free DNA ratio (46). Also, differences in 
tumor genomics could occur between the CNS and extra-
CNS lesions because of reduced CNS drug penetration 
which could determine a different tumor selection in the 
CNS (47). This might explain the variable prevalence of 
EGFR T790M which has been reported within studies. In 
the study of Li et al., EGFR T790M was detected in 30.4% 
in CSF versus 21.7% in plasma after TKI progression at 
leptomeningeal metastasis diagnosis (45), while Ying et al. 
reported a higher EGFR T790M mutation detection rate in 
plasma than in CSF (15.3% plasma vs. 2.8% CSF, P=0.017) 
in 72 NSCLC patients with leptomeningeal metastases (44). 
In another study, EGFR T790M was rarely found in CSF at 
diagnosis of leptomeningeal metastases in patients exposed 
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to TKI, in more cases under erlotinib than under gefitinib, 
suggesting that the emergence of resistance mutation might 
be correlated with the CSF concentration of first generation 
TKI (48). 

While the relevance of CSF liquid biopsy is supported by 
several studies in patients with leptomeningeal metastases, 
less is known about its utility for patients with brain 
metastases. In 66 treatment naive NSCLC patients, Li et 
al. recently investigated the phenotypical features of brain 
metastases to predict the probability of detecting ctDNA in 
CSF. After considering tumor size and distance to ventricles, 
authors established a prediction model to select patients 
for CSF analysis with AUC 0.82, sensitivity of 90.6% and 
specificity of 73.9% (49). This work aimed to avoid invasive 
procedures (lumbar punctures) in patients with low chances 
of having a positive liquid biopsy. However, in addition to 
the amount of ctDNA that is shed in the CSF, the sensitivity 
of the liquid biopsy technique would also have an important 
contribution. 

In addition to the molecular profile, another factor 
that should be considered at progression is the TKI 
concentration. In an exploratory cohort of 41 patients with 
oncogene-addicted NSCLC patients treated with TKI, the 
plasmatic TKI concentration at progression was lower than 
normal in 57% (n=21/37 samples) of cases, including 3 out 
of 4 patients with isolated CNS progression (50). 

Unanswered questions and future perspectives

Could plasma liquid biopsy still be useful in case of isolated 
CNS progression? 

The absence of any identified genomic alteration in a plasma 
liquid biopsy in an oncogene-addicted NSCLC patient with 
isolated CNS progression should be interpreted as a false 
negative result, most probably caused by an insufficient 
plasmatic ctDNA. In the absence of known drivers, aberrant 
ctDNA methylation may help to accurately identify and 
quantify ctDNA with respect to normal circulating free 
DNA (51). When the plasma liquid biopsy is found to 
be positive and genomic alterations are identified, it may 
reveal the molecular profile corresponding to the CNS 
progression but it may also predict for a subsequent extra-
CNS progression (9). It would be interesting to evaluate 
this observation in prospective studies, as it may prove to 
be useful in the selection of CNS progressing patients for 
brain irradiation or for the switch of systemic therapy. 

Could CSF liquid biopsy evaluate response to treatment in 
case of leptomeningeal disease? 

The evaluat ion of  treatment response in case of 
leptomeningeal meningitis is evaluated by radiological 
f indings,  CSF cytology and cl inical  evolution of 
neurological signs and symptoms (52). However, this is less 
precise than in case of brain metastases and often difficult 
to perform, especially in the absence of typical radiological 
findings. It may be interesting to investigate CSF liquid 
biopsy as a potential tool to evaluate response to treatment 
or even to guide subsequent therapeutic strategies in case of 
isolated leptomeningeal progression. 

Conclusions

CNS progression is a common event in patients with ALK 
or ROS1 positive NSCLC. The molecular characterization 
of CNS disease can be performed by liquid biopsy, the most 
accurate being the CSF analysis. Tailoring treatment based 
on the molecular profile may improve patients’ outcomes 
and possibly lower the risk of rapid CNS deterioration as 
compared to a “blinded” treatment switch, currently under 
evaluation in prospective studies.
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